Image Display with Firefly¶

No description has been provided for this image
Contact author: Jeff Carlin
Last verified to run: 2024-12-17
LSST Science Pipelines version: Weekly 2024_50
Container Size: medium
Targeted learning level: beginner

Description: This tutorial demonstrates the Firefly interactive interface for image data.

Skills: Using Firefly as the display interface; visualizing images and their masks; overlaying sources on images.

LSST Data Products: DP0.2 collection: '2.2i/runs/DP0.2'. Dataset types: 'calexp,' 'src,' 'deepCoadd_calexp,' 'deepCoadd_forced_src,' 'deepCoadd_ref.'

Packages: lsst.afw.display, lsst.daf.butler

Credit: This tutorial is based in part on the Firefly.ipynb notebook that is available under your home directory, in notebooks/system-test.

Get Support: Find DP0-related documentation and resources at dp0.lsst.io. Questions are welcome as new topics in the Support - Data Preview 0 Category of the Rubin Community Forum. Rubin staff will respond to all questions posted there.

1. Introduction¶

This notebook is a counterpart to DP0.2 tutorial notebook 03a on image display and manipulation, and is intended to demonstrate the Firefly interactive interface for viewing image data. As in the complementary "Image display" notebook, we will use the Butler to access images. We will also use the lsst.afw.display library to display images, but in this case with a different "back end" -- the interactive Firefly display tool.

1.1. Package imports¶

First, load the lsst.afw.display library to gain access to the image visualization routines we'd like to use, and the lsst.daf.butler library, which is used to access data products.

In [1]:
import lsst.afw.display as afwDisplay
from lsst.daf.butler import Butler

2. Load the data to visualize¶

To display an image, we must first load some data. These data have been processed with the LSST Science Pipelines, and are organized in a structure that enables us to access them through the Butler. For more information on the Butler, see lsst.daf.butler.

The DP0.2 data set contains simulated images from the LSST DESC Data Challenge 2 (DC2). These data are available in an S3 bucket called dp02. We access a single image from a specific visit (192350) and detector (175). This visit was obtained with the i-band filter; although 'band': 'i' could be added to the dataId in the cell below, it would be redundant because the combination of visit and detector already uniquely identifies the exposure.

Once we define a string that contains the data directory, we start the Butler instance using the lsst.daf.butler library and its Butler class. The Butler object is initialized with a string containing the data directory we wish to access. Running the cell may take a few moments.

With the Butler instance now generated using our data directory, we can retrieve the desired calibrated exposure by telling the Butler which filter ("band"), CCD ("detector"), and visit we wish to view. To do this, define a dictionary with the required information.

In [2]:
dataId = {'visit': 192350, 'detector': 175}
butler = Butler('dp02', collections='2.2i/runs/DP0.2')
calexp = butler.get('calexp', **dataId)

3. Display a calexp image¶

To display the calexp you will use the LSST afwDisplay framework. It provides a uniform API for multiple display backends, including DS9, matplotlib, and LSST’s Firefly viewer. The default backend is ds9, but since we are working remotely on JupyterLab we would prefer to use the web-based Firefly display. A user guide for lsst.display.firefly is available on the pipelines.lsst.io site.

3.1. Create a display¶

Now, create a Firefly display.

Notice: If the following cell does not cause the Firefly display to open in a new tab within the Notebook Aspect, try going to "Kernel" --> "Restart Kernel and Clear All Outputs...", and then re-running all of the cells and the cell below. If that does not work, shut down this notebook and fully log out of the RSP, and log back in again. Ensure you are using the recommended image for the Notebook Aspect and at least a medium container size. If the Firefly display still does not open, please submit a GitHub Issue.

In [3]:
afwDisplay.setDefaultBackend('firefly')
afw_display = afwDisplay.Display(frame=1)

In the Science Platform Notebook aspect, a Firefly viewer tab appears.

Click on the tab above that says "Firefly: slateClient..." and drag it down to the middle-right part of the JupyterLab area to create two side by side panes, one with the notebook and one with the Firefly image display.

3.2. Display the calexp (calibrated exposure)¶

We can now build the display and use the mtv method to view the calexp with Firefly. First display an image with mask planes and then overplot some sources.

In [4]:
afw_display.mtv(calexp)

As soon as you execute the command a single calibrated DC2 exposure for the {'band': 'i', 'detector': 175, 'visit': 192350} data ID should appear in the Firefly JupyterLab tab.

Notice that the image is overlaid with colorful regions. These are mask regions. Each color reflects a different mask bit that corresponds to detections and different types of detector artifacts. You’ll learn how to interpret these colors later, but first you’ll likely want to adjust the image display.

3.3. Improving the image display¶

The display framework gives you control over the image display to help bring out image details. The default is for masked regions to be semi-transparent, so that underlying image features are visible. The setMaskTransparency method’s argument can range from 0 (fully opaque) to 100 (fully transparent).

See the difference when mask trasparency is set to 20% (mostly opaque):

In [5]:
afw_display.setMaskTransparency(20)

And now set it back to 80% (mostly transparent):

In [6]:
afw_display.setMaskTransparency(80)

You can also control the colorbar scaling algorithm with the display’s scale method. Try an asinh stretch with explicit minimum (black) and maximum (white) values:

In [7]:
afw_display.scale("asinh", -5, 20)

You can also use an automatic algorithm like zscale (or minmax) to select the white and black thresholds:

In [8]:
afw_display.scale("asinh", "zscale")

3.4. Interpreting displayed mask colors¶

The display framework renders each plane of the mask in a different color (plane being a different bit in the mask). To interpret these colors you can get a dictionary of mask planes from the calexp and query the display for the colors it rendered each mask plane with. For example:

In [9]:
mask = calexp.getMask()
for maskName, maskBit in mask.getMaskPlaneDict().items():
    print('{}: {}'.format(maskName, afw_display.getMaskPlaneColor(maskName)))
BAD: red
CR: magenta
CROSSTALK: blue
DETECTED: blue
DETECTED_NEGATIVE: cyan
EDGE: yellow
INTRP: green
NOT_DEBLENDED: cyan
NO_DATA: orange
SAT: green
STREAK: green
SUSPECT: yellow
UNMASKEDNAN: magenta
VIGNETTED: red

3.4.1. Find mask names and colors in the Firefly interactive panel¶

In the Firefly viewer tab, at upper right, there are several icon buttons. Hover over each icon to see pop-up text describing the button's functionality.

Click on the button for "Manipulate overlay display...". A "Layers" pop-up window will appear that contains the mask name and its color.

3.5 Adjusting displayed masked colors¶

There are times when one might wish to adjust the displayed masked colors -- e.g., to highlight one or more masks more prominently, or to make make the mask colors more color-blind friendly. Here we will look at two different methods for adjusting the displayed masked colors: using lsst.afw.display commands from within the notebook, and using the interactive panel within the firefly display. We will consider each of these in turn.

3.5.1 Using lsst.afw.display commands¶

Let us start out using lsst.afw.display commands within the notebook itself.

First, let us save the original mask plane colors to a python dictionary so we can easily reset them to their defaults later, after working with them.

In [10]:
origMaskPlaneColorsDict = {}
for maskName, maskBit in mask.getMaskPlaneDict().items():
    origMaskPlaneColorsDict[maskName] = afw_display.getMaskPlaneColor(maskName)

print(origMaskPlaneColorsDict)
{'BAD': 'red', 'CR': 'magenta', 'CROSSTALK': 'blue', 'DETECTED': 'blue', 'DETECTED_NEGATIVE': 'cyan', 'EDGE': 'yellow', 'INTRP': 'green', 'NOT_DEBLENDED': 'cyan', 'NO_DATA': 'orange', 'SAT': 'green', 'STREAK': 'green', 'SUSPECT': 'yellow', 'UNMASKEDNAN': 'magenta', 'VIGNETTED': 'red'}

There are only a handful of basic colors used as default colors for the different mask planes, and some are used multiple times. Some of these mask planes are not often used and they might not all appear for a given image in the Firefly display.

With lsst.afw.display, there are many options for colors. For example, one can use any of the X11 color names, which are listed here: https://en.wikipedia.org/wiki/X11_color_names.

For example, change the color of the NOT_DEBLENDED mask plane to purple:

In [11]:
afw_display.setMaskPlaneColor('NOT_DEBLENDED','purple')

The change won't actually appear in the Firefly display until you rerun the mtv command:

In [12]:
afw_display.mtv(calexp)

One can also use hex designations for colors, e.g., this color-blind-friendly set from https://gist.github.com/thriveth/8560036 :

In [13]:
CB_color_cycle = ['#377eb8', '#ff7f00', '#4daf4a',
                  '#f781bf', '#a65628', '#984ea3',
                  '#999999', '#e41a1c', '#dede00']

Let's reset these 7 commonly used masked planes to the first 7 of the above color-blind-friendly set of colors:

In [14]:
afw_display.setMaskPlaneColor('CR',CB_color_cycle[0])
afw_display.setMaskPlaneColor('CROSSTALK',CB_color_cycle[1])
afw_display.setMaskPlaneColor('DETECTED',CB_color_cycle[2])
afw_display.setMaskPlaneColor('EDGE',CB_color_cycle[3])
afw_display.setMaskPlaneColor('INTRP',CB_color_cycle[4])
afw_display.setMaskPlaneColor('NOT_DEBLENDED',CB_color_cycle[5])
afw_display.setMaskPlaneColor('SAT',CB_color_cycle[6])

Then rerun the mtv command to see the updated mask colors:

In [15]:
afw_display.mtv(calexp)

Now, let's reset all of the masked planes to their original displayed colors:

In [16]:
for key in origMaskPlaneColorsDict:
    print(key, origMaskPlaneColorsDict[key])
    afw_display.setMaskPlaneColor(key,origMaskPlaneColorsDict[key])
BAD red
CR magenta
CROSSTALK blue
DETECTED blue
DETECTED_NEGATIVE cyan
EDGE yellow
INTRP green
NOT_DEBLENDED cyan
NO_DATA orange
SAT green
STREAK green
SUSPECT yellow
UNMASKEDNAN magenta
VIGNETTED red

And rerun the mtv command to see that the mask planes have indeed reverted to their original displayed colors:

In [17]:
afw_display.mtv(calexp)

Finally, one can also effectively turn given masks "off" in the Firefly display by setting their transparency to 100:

In [18]:
afw_display.setMaskTransparency(100, 'NOT_DEBLENDED')

And then reset it to something more opaque:

In [19]:
afw_display.setMaskTransparency(40, 'NOT_DEBLENDED')

3.5.2 Using the Firefly interactive panel¶

Click on the button for "Manipulate overlay display...". The "Layers" pop-up window provides more detailed control over the mask planes.

Turn individual planes on and off by clicking the toggles at left.

Change the color and transparency by clicking on the color square, and selecting a new color or using the transparency slider bar in the "Color Picker" pop-up window.

Delete a mask layer by clicking on the X at right.

firefly_display_example.png

Notice: Modifications to the displayed masked colors made via lsst.afw.display commands will be mirrored in the Firefly overlay display panel. However, changes performed in the Firefly overlay display panel might not be mirrored in the lsst.afw.display variables.

For example, changing the color of the DETECTED mask layer to purple via afw_display.setMaskPlaneColor('DETECTED','purple') will appear in the graphical panel). But changing the DETECTED mask layer to purple in the graphical panel does not cause afw_display.getMaskPlaneColor('DETECTED') in the notebook tab to also yield a value of 'purple'.

3.6. Plotting sources on the display¶

The measurements for all sources detected in the calexp image by the LSST science pipelines are in a dataset type src. Use the Butler to get the src catalog corresponding to the same dataId as the image we displayed:

In [20]:
src = butler.get('src', **dataId)

The returned object, src, is a lsst.afw.table.SourceTable object. SourceTables are explored more elsewhere, but you can do some simple investigations using common python functions. For example, check the length of the object:

In [21]:
len(src)
Out[21]:
2548

View an HTML rendering of the src table by getting an astropy.table.Table version of it:

In [22]:
src.asAstropy()
Out[22]:
Table length=2548
idcoord_racoord_decparentcalib_detectedcalib_psf_candidatecalib_psf_usedcalib_psf_reserveddeblend_nChilddeblend_deblendedAsPsfdeblend_psfCenter_xdeblend_psfCenter_ydeblend_psf_instFluxdeblend_tooManyPeaksdeblend_parentTooBigdeblend_maskeddeblend_skippeddeblend_rampedTemplatedeblend_patchedTemplatedeblend_hasStrayFluxdeblend_peak_center_xdeblend_peak_center_ydeblend_peakIddeblend_nPeaksdeblend_parentNPeakssky_sourcebase_NaiveCentroid_xbase_NaiveCentroid_ybase_NaiveCentroid_flagbase_NaiveCentroid_flag_noCountsbase_NaiveCentroid_flag_edgebase_NaiveCentroid_flag_resetToPeakbase_SdssCentroid_xslot_Centroid_xbase_SdssCentroid_yslot_Centroid_ybase_SdssCentroid_xErrslot_Centroid_xErrbase_SdssCentroid_yErrslot_Centroid_yErrbase_SdssCentroid_flagbase_CircularApertureFlux_flag_badCentroidbase_GaussianFlux_flag_badCentroidbase_LocalBackground_flag_badCentroidbase_NaiveCentroid_flag_badInitialCentroidbase_PsfFlux_flag_badCentroidbase_SdssShape_flag_badCentroidbase_Variance_flag_badCentroidext_photometryKron_KronFlux_flag_badInitialCentroidext_shapeHSM_HsmPsfMomentsDebiased_flag_badCentroidext_shapeHSM_HsmPsfMoments_flag_badCentroidext_shapeHSM_HsmShapeRegauss_flag_badCentroidext_shapeHSM_HsmSourceMomentsRound_flag_badCentroidext_shapeHSM_HsmSourceMoments_flag_badCentroidslot_Centroid_flagbase_SdssCentroid_flag_edgebase_CircularApertureFlux_flag_badCentroid_edgebase_GaussianFlux_flag_badCentroid_edgebase_LocalBackground_flag_badCentroid_edgebase_NaiveCentroid_flag_badInitialCentroid_edgebase_PsfFlux_flag_badCentroid_edgebase_SdssShape_flag_badCentroid_edgebase_Variance_flag_badCentroid_edgeext_photometryKron_KronFlux_flag_badInitialCentroid_edgeext_shapeHSM_HsmPsfMomentsDebiased_flag_badCentroid_edgeext_shapeHSM_HsmPsfMoments_flag_badCentroid_edgeext_shapeHSM_HsmShapeRegauss_flag_badCentroid_edgeext_shapeHSM_HsmSourceMomentsRound_flag_badCentroid_edgeext_shapeHSM_HsmSourceMoments_flag_badCentroid_edgeslot_Centroid_flag_edgebase_SdssCentroid_flag_noSecondDerivativebase_CircularApertureFlux_flag_badCentroid_noSecondDerivativebase_GaussianFlux_flag_badCentroid_noSecondDerivativebase_LocalBackground_flag_badCentroid_noSecondDerivativebase_NaiveCentroid_flag_badInitialCentroid_noSecondDerivativebase_PsfFlux_flag_badCentroid_noSecondDerivativebase_SdssShape_flag_badCentroid_noSecondDerivativebase_Variance_flag_badCentroid_noSecondDerivativeext_photometryKron_KronFlux_flag_badInitialCentroid_noSecondDerivativeext_shapeHSM_HsmPsfMomentsDebiased_flag_badCentroid_noSecondDerivativeext_shapeHSM_HsmPsfMoments_flag_badCentroid_noSecondDerivativeext_shapeHSM_HsmShapeRegauss_flag_badCentroid_noSecondDerivativeext_shapeHSM_HsmSourceMomentsRound_flag_badCentroid_noSecondDerivativeext_shapeHSM_HsmSourceMoments_flag_badCentroid_noSecondDerivativeslot_Centroid_flag_noSecondDerivativebase_SdssCentroid_flag_almostNoSecondDerivativebase_CircularApertureFlux_flag_badCentroid_almostNoSecondDerivativebase_GaussianFlux_flag_badCentroid_almostNoSecondDerivativebase_LocalBackground_flag_badCentroid_almostNoSecondDerivativebase_NaiveCentroid_flag_badInitialCentroid_almostNoSecondDerivativebase_PsfFlux_flag_badCentroid_almostNoSecondDerivativebase_SdssShape_flag_badCentroid_almostNoSecondDerivativebase_Variance_flag_badCentroid_almostNoSecondDerivativeext_photometryKron_KronFlux_flag_badInitialCentroid_almostNoSecondDerivativeext_shapeHSM_HsmPsfMomentsDebiased_flag_badCentroid_almostNoSecondDerivativeext_shapeHSM_HsmPsfMoments_flag_badCentroid_almostNoSecondDerivativeext_shapeHSM_HsmShapeRegauss_flag_badCentroid_almostNoSecondDerivativeext_shapeHSM_HsmSourceMomentsRound_flag_badCentroid_almostNoSecondDerivativeext_shapeHSM_HsmSourceMoments_flag_badCentroid_almostNoSecondDerivativeslot_Centroid_flag_almostNoSecondDerivativebase_SdssCentroid_flag_notAtMaximumbase_CircularApertureFlux_flag_badCentroid_notAtMaximumbase_GaussianFlux_flag_badCentroid_notAtMaximumbase_LocalBackground_flag_badCentroid_notAtMaximumbase_NaiveCentroid_flag_badInitialCentroid_notAtMaximumbase_PsfFlux_flag_badCentroid_notAtMaximumbase_SdssShape_flag_badCentroid_notAtMaximumbase_Variance_flag_badCentroid_notAtMaximumext_photometryKron_KronFlux_flag_badInitialCentroid_notAtMaximumext_shapeHSM_HsmPsfMomentsDebiased_flag_badCentroid_notAtMaximumext_shapeHSM_HsmPsfMoments_flag_badCentroid_notAtMaximumext_shapeHSM_HsmShapeRegauss_flag_badCentroid_notAtMaximumext_shapeHSM_HsmSourceMomentsRound_flag_badCentroid_notAtMaximumext_shapeHSM_HsmSourceMoments_flag_badCentroid_notAtMaximumslot_Centroid_flag_notAtMaximumbase_SdssCentroid_flag_resetToPeakbase_CircularApertureFlux_flag_badCentroid_resetToPeakbase_GaussianFlux_flag_badCentroid_resetToPeakbase_LocalBackground_flag_badCentroid_resetToPeakbase_NaiveCentroid_flag_badInitialCentroid_resetToPeakbase_PsfFlux_flag_badCentroid_resetToPeakbase_SdssShape_flag_badCentroid_resetToPeakbase_Variance_flag_badCentroid_resetToPeakext_photometryKron_KronFlux_flag_badInitialCentroid_resetToPeakext_shapeHSM_HsmPsfMomentsDebiased_flag_badCentroid_resetToPeakext_shapeHSM_HsmPsfMoments_flag_badCentroid_resetToPeakext_shapeHSM_HsmShapeRegauss_flag_badCentroid_resetToPeakext_shapeHSM_HsmSourceMomentsRound_flag_badCentroid_resetToPeakext_shapeHSM_HsmSourceMoments_flag_badCentroid_resetToPeakslot_Centroid_flag_resetToPeakbase_SdssCentroid_flag_badErrorbase_CircularApertureFlux_flag_badCentroid_badErrorbase_GaussianFlux_flag_badCentroid_badErrorbase_LocalBackground_flag_badCentroid_badErrorbase_NaiveCentroid_flag_badInitialCentroid_badErrorbase_PsfFlux_flag_badCentroid_badErrorbase_SdssShape_flag_badCentroid_badErrorbase_Variance_flag_badCentroid_badErrorext_photometryKron_KronFlux_flag_badInitialCentroid_badErrorext_shapeHSM_HsmPsfMomentsDebiased_flag_badCentroid_badErrorext_shapeHSM_HsmPsfMoments_flag_badCentroid_badErrorext_shapeHSM_HsmShapeRegauss_flag_badCentroid_badErrorext_shapeHSM_HsmSourceMomentsRound_flag_badCentroid_badErrorext_shapeHSM_HsmSourceMoments_flag_badCentroid_badErrorslot_Centroid_flag_badErrorbase_Blendedness_oldbase_Blendedness_rawbase_Blendedness_raw_child_instFluxbase_Blendedness_raw_parent_instFluxbase_Blendedness_absbase_Blendedness_abs_child_instFluxbase_Blendedness_abs_parent_instFluxbase_Blendedness_raw_child_xxbase_Blendedness_raw_child_yybase_Blendedness_raw_child_xybase_Blendedness_raw_parent_xxbase_Blendedness_raw_parent_yybase_Blendedness_raw_parent_xybase_Blendedness_abs_child_xxbase_Blendedness_abs_child_yybase_Blendedness_abs_child_xybase_Blendedness_abs_parent_xxbase_Blendedness_abs_parent_yybase_Blendedness_abs_parent_xybase_Blendedness_flagbase_Blendedness_flag_noCentroidbase_Blendedness_flag_noShapebase_FPPosition_xbase_FPPosition_ybase_FPPosition_flagbase_FPPosition_missingDetector_flagbase_Jacobian_valuebase_Jacobian_flagbase_SdssShape_xxbase_SdssShape_yybase_SdssShape_xybase_SdssShape_xxErrbase_SdssShape_yyErrbase_SdssShape_xyErrbase_SdssShape_xbase_SdssShape_ybase_SdssShape_instFluxbase_SdssShape_instFluxErrbase_SdssShape_psf_xxbase_SdssShape_psf_yybase_SdssShape_psf_xybase_SdssShape_instFlux_xx_Covbase_SdssShape_instFlux_yy_Covbase_SdssShape_instFlux_xy_Covbase_SdssShape_flagbase_SdssShape_flag_unweightedBadbase_SdssShape_flag_unweightedbase_SdssShape_flag_shiftbase_SdssShape_flag_maxIterbase_SdssShape_flag_psfext_shapeHSM_HsmPsfMoments_xslot_PsfShape_xext_shapeHSM_HsmPsfMoments_yslot_PsfShape_yext_shapeHSM_HsmPsfMoments_xxslot_PsfShape_xxext_shapeHSM_HsmPsfMoments_yyslot_PsfShape_yyext_shapeHSM_HsmPsfMoments_xyslot_PsfShape_xyext_shapeHSM_HsmPsfMoments_flagslot_PsfShape_flagext_shapeHSM_HsmPsfMoments_flag_no_pixelsslot_PsfShape_flag_no_pixelsext_shapeHSM_HsmPsfMoments_flag_not_containedslot_PsfShape_flag_not_containedext_shapeHSM_HsmPsfMoments_flag_parent_sourceslot_PsfShape_flag_parent_sourceext_shapeHSM_HsmPsfMoments_flag_galsimslot_PsfShape_flag_galsimext_shapeHSM_HsmPsfMoments_flag_edgeslot_PsfShape_flag_edgeext_shapeHSM_HsmShapeRegauss_e1ext_shapeHSM_HsmShapeRegauss_e2ext_shapeHSM_HsmShapeRegauss_sigmaext_shapeHSM_HsmShapeRegauss_resolutionext_shapeHSM_HsmShapeRegauss_flagext_shapeHSM_HsmShapeRegauss_flag_no_pixelsext_shapeHSM_HsmShapeRegauss_flag_not_containedext_shapeHSM_HsmShapeRegauss_flag_parent_sourceext_shapeHSM_HsmShapeRegauss_flag_galsimext_shapeHSM_HsmSourceMoments_xslot_Shape_xext_shapeHSM_HsmSourceMoments_yslot_Shape_yext_shapeHSM_HsmSourceMoments_xxslot_Shape_xxext_shapeHSM_HsmSourceMoments_yyslot_Shape_yyext_shapeHSM_HsmSourceMoments_xyslot_Shape_xyext_shapeHSM_HsmSourceMoments_flagbase_GaussianFlux_flag_badShapeslot_Shape_flagext_shapeHSM_HsmSourceMoments_flag_no_pixelsbase_GaussianFlux_flag_badShape_no_pixelsslot_Shape_flag_no_pixelsext_shapeHSM_HsmSourceMoments_flag_not_containedbase_GaussianFlux_flag_badShape_not_containedslot_Shape_flag_not_containedext_shapeHSM_HsmSourceMoments_flag_parent_sourcebase_GaussianFlux_flag_badShape_parent_sourceslot_Shape_flag_parent_sourceext_shapeHSM_HsmSourceMoments_flag_galsimbase_GaussianFlux_flag_badShape_galsimslot_Shape_flag_galsimext_shapeHSM_HsmSourceMoments_flag_edgebase_GaussianFlux_flag_badShape_edgeslot_Shape_flag_edgeext_shapeHSM_HsmSourceMomentsRound_xslot_ShapeRound_xext_shapeHSM_HsmSourceMomentsRound_yslot_ShapeRound_yext_shapeHSM_HsmSourceMomentsRound_xxslot_ShapeRound_xxext_shapeHSM_HsmSourceMomentsRound_yyslot_ShapeRound_yyext_shapeHSM_HsmSourceMomentsRound_xyslot_ShapeRound_xyext_shapeHSM_HsmSourceMomentsRound_flagslot_ShapeRound_flagext_shapeHSM_HsmSourceMomentsRound_flag_no_pixelsslot_ShapeRound_flag_no_pixelsext_shapeHSM_HsmSourceMomentsRound_flag_not_containedslot_ShapeRound_flag_not_containedext_shapeHSM_HsmSourceMomentsRound_flag_parent_sourceslot_ShapeRound_flag_parent_sourceext_shapeHSM_HsmSourceMomentsRound_flag_galsimslot_ShapeRound_flag_galsimext_shapeHSM_HsmSourceMomentsRound_flag_edgeslot_ShapeRound_flag_edgeext_shapeHSM_HsmSourceMomentsRound_Fluxslot_ShapeRound_Fluxbase_CircularApertureFlux_3_0_instFluxbase_CircularApertureFlux_3_0_instFluxErrbase_CircularApertureFlux_3_0_flagbase_CircularApertureFlux_3_0_flag_apertureTruncatedbase_CircularApertureFlux_3_0_flag_sincCoeffsTruncatedbase_CircularApertureFlux_4_5_instFluxbase_CircularApertureFlux_4_5_instFluxErrbase_CircularApertureFlux_4_5_flagbase_CircularApertureFlux_4_5_flag_apertureTruncatedbase_CircularApertureFlux_4_5_flag_sincCoeffsTruncatedbase_CircularApertureFlux_6_0_instFluxbase_CircularApertureFlux_6_0_instFluxErrbase_CircularApertureFlux_6_0_flagbase_CircularApertureFlux_6_0_flag_apertureTruncatedbase_CircularApertureFlux_6_0_flag_sincCoeffsTruncatedbase_CircularApertureFlux_9_0_instFluxbase_CircularApertureFlux_9_0_instFluxErrbase_CircularApertureFlux_9_0_flagbase_CircularApertureFlux_9_0_flag_apertureTruncatedbase_CircularApertureFlux_9_0_flag_sincCoeffsTruncatedbase_CircularApertureFlux_12_0_instFluxslot_ApFlux_instFluxslot_CalibFlux_instFluxbase_CircularApertureFlux_12_0_instFluxErrslot_ApFlux_instFluxErrslot_CalibFlux_instFluxErrbase_CircularApertureFlux_12_0_flagslot_ApFlux_flagslot_CalibFlux_flagbase_CircularApertureFlux_12_0_flag_apertureTruncatedslot_ApFlux_flag_apertureTruncatedslot_CalibFlux_flag_apertureTruncatedbase_CircularApertureFlux_12_0_flag_sincCoeffsTruncatedslot_ApFlux_flag_sincCoeffsTruncatedslot_CalibFlux_flag_sincCoeffsTruncatedbase_CircularApertureFlux_17_0_instFluxbase_CircularApertureFlux_17_0_instFluxErrbase_CircularApertureFlux_17_0_flagbase_CircularApertureFlux_17_0_flag_apertureTruncatedbase_CircularApertureFlux_25_0_instFluxbase_CircularApertureFlux_25_0_instFluxErrbase_CircularApertureFlux_25_0_flagbase_CircularApertureFlux_25_0_flag_apertureTruncatedbase_CircularApertureFlux_35_0_instFluxbase_CircularApertureFlux_35_0_instFluxErrbase_CircularApertureFlux_35_0_flagbase_CircularApertureFlux_35_0_flag_apertureTruncatedbase_CircularApertureFlux_50_0_instFluxbase_CircularApertureFlux_50_0_instFluxErrbase_CircularApertureFlux_50_0_flagbase_CircularApertureFlux_50_0_flag_apertureTruncatedbase_CircularApertureFlux_70_0_instFluxbase_CircularApertureFlux_70_0_instFluxErrbase_CircularApertureFlux_70_0_flagbase_CircularApertureFlux_70_0_flag_apertureTruncatedbase_GaussianFlux_instFluxslot_GaussianFlux_instFluxslot_ModelFlux_instFluxbase_GaussianFlux_instFluxErrslot_GaussianFlux_instFluxErrslot_ModelFlux_instFluxErrbase_GaussianFlux_flagslot_GaussianFlux_flagslot_ModelFlux_flagbase_LocalBackground_instFluxbase_LocalBackground_instFluxErrbase_LocalBackground_flagbase_LocalBackground_flag_noGoodPixelsbase_LocalBackground_flag_noPsfbase_LocalPhotoCalib_flagbase_LocalPhotoCalibbase_LocalPhotoCalibErrbase_LocalWcs_flagbase_LocalWcs_CDMatrix_1_1base_LocalWcs_CDMatrix_1_2base_LocalWcs_CDMatrix_2_1base_LocalWcs_CDMatrix_2_2base_PixelFlags_flagbase_PixelFlags_flag_offimagebase_PixelFlags_flag_edgebase_PixelFlags_flag_interpolatedbase_PixelFlags_flag_saturatedbase_PixelFlags_flag_crbase_PixelFlags_flag_badbase_PixelFlags_flag_suspectbase_PixelFlags_flag_interpolatedCenterbase_PixelFlags_flag_saturatedCenterbase_PixelFlags_flag_crCenterbase_PixelFlags_flag_suspectCenterbase_PsfFlux_instFluxslot_PsfFlux_instFluxbase_PsfFlux_instFluxErrslot_PsfFlux_instFluxErrbase_PsfFlux_areaslot_PsfFlux_areabase_PsfFlux_chi2slot_PsfFlux_chi2base_PsfFlux_npixelsslot_PsfFlux_npixelsbase_PsfFlux_flagslot_PsfFlux_flagbase_PsfFlux_flag_noGoodPixelsslot_PsfFlux_flag_noGoodPixelsbase_PsfFlux_flag_edgeslot_PsfFlux_flag_edgebase_Variance_flagbase_Variance_valuebase_Variance_flag_emptyFootprintext_photometryKron_KronFlux_instFluxext_photometryKron_KronFlux_instFluxErrext_photometryKron_KronFlux_radiusext_photometryKron_KronFlux_radius_for_radiusext_photometryKron_KronFlux_psf_radiusext_photometryKron_KronFlux_flagext_photometryKron_KronFlux_flag_edgeext_photometryKron_KronFlux_flag_bad_shape_no_psfext_photometryKron_KronFlux_flag_no_minimum_radiusext_photometryKron_KronFlux_flag_no_fallback_radiusext_photometryKron_KronFlux_flag_bad_radiusext_photometryKron_KronFlux_flag_used_minimum_radiusext_photometryKron_KronFlux_flag_used_psf_radiusext_photometryKron_KronFlux_flag_small_radiusext_photometryKron_KronFlux_flag_bad_shapeext_shapeHSM_HsmPsfMomentsDebiased_xslot_PsfShapeDebiased_xext_shapeHSM_HsmPsfMomentsDebiased_yslot_PsfShapeDebiased_yext_shapeHSM_HsmPsfMomentsDebiased_xxslot_PsfShapeDebiased_xxext_shapeHSM_HsmPsfMomentsDebiased_yyslot_PsfShapeDebiased_yyext_shapeHSM_HsmPsfMomentsDebiased_xyslot_PsfShapeDebiased_xyext_shapeHSM_HsmPsfMomentsDebiased_flagslot_PsfShapeDebiased_flagext_shapeHSM_HsmPsfMomentsDebiased_flag_no_pixelsslot_PsfShapeDebiased_flag_no_pixelsext_shapeHSM_HsmPsfMomentsDebiased_flag_not_containedslot_PsfShapeDebiased_flag_not_containedext_shapeHSM_HsmPsfMomentsDebiased_flag_parent_sourceslot_PsfShapeDebiased_flag_parent_sourceext_shapeHSM_HsmPsfMomentsDebiased_flag_galsimslot_PsfShapeDebiased_flag_galsimext_shapeHSM_HsmPsfMomentsDebiased_flag_edgeslot_PsfShapeDebiased_flag_edgedetect_isPrimarydetect_isDeblendedSourcedetect_fromBlenddetect_isIsolatedbase_GaussianFlux_apCorrslot_GaussianFlux_apCorrslot_ModelFlux_apCorrbase_GaussianFlux_apCorrErrslot_GaussianFlux_apCorrErrslot_ModelFlux_apCorrErrbase_GaussianFlux_flag_apCorrslot_GaussianFlux_flag_apCorrslot_ModelFlux_flag_apCorrbase_PsfFlux_apCorrslot_PsfFlux_apCorrbase_PsfFlux_apCorrErrslot_PsfFlux_apCorrErrbase_PsfFlux_flag_apCorrslot_PsfFlux_flag_apCorrext_photometryKron_KronFlux_apCorrext_photometryKron_KronFlux_apCorrErrext_photometryKron_KronFlux_flag_apCorrbase_ClassificationExtendedness_valuebase_ClassificationExtendedness_flagbase_FootprintArea_valuecalib_astrometry_usedcalib_photometry_usedcalib_photometry_reserved
radradpixpixctpixpixpixpixpixpixpixpixpixpixpixpixctctctctpix2pix2pix2pix2pix2pix2pix2pix2pix2pix2pix2pix2mmmmpix2pix2pix2pix2pix2pix2pixpixctctpix2pix2pix2pix2 ctpix2 ctpix2 ctpixpixpixpixpix2pix2pix2pix2pix2pix2pixpixpixpixpix2pix2pix2pix2pix2pix2pixpixpixpixpix2pix2pix2pix2pix2pix2ctctctctctctctctctctctctctctctctctctctctctctctctctctctctctctctctctctctctpixpixpixpixctctpixpixpixpixpix2pix2pix2pix2pix2pix2pix
int64float64float64int64boolboolboolboolint32boolfloat64float64float64boolboolboolboolboolboolboolint32int32int32int32int32boolfloat64float64boolboolboolboolfloat64float64float64float64float32float32float32float32boolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolfloat64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64boolboolboolfloat64float64boolboolfloat64boolfloat64float64float64float32float32float32float64float64float64float64float64float64float64float32float32float32boolboolboolboolboolboolfloat64float64float64float64float64float64float64float64float64float64boolboolboolboolboolboolboolboolboolboolboolboolfloat64float64float64float64boolboolboolboolboolfloat64float64float64float64float64float64float64float64float64float64boolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolfloat64float64float64float64float64float64float64float64float64float64boolboolboolboolboolboolboolboolboolboolboolboolfloat32float32float64float64boolboolboolfloat64float64boolboolboolfloat64float64boolboolboolfloat64float64boolboolboolfloat64float64float64float64float64float64boolboolboolboolboolboolboolboolboolfloat64float64boolboolfloat64float64boolboolfloat64float64boolboolfloat64float64boolboolfloat64float64boolboolfloat64float64float64float64float64float64boolboolboolfloat64float64boolboolboolboolfloat64float64boolfloat64float64float64float64boolboolboolboolboolboolboolboolboolboolboolboolfloat64float64float64float64float32float32float32float32int32int32boolboolboolboolboolboolboolfloat64boolfloat64float64float32float32float32boolboolboolboolboolboolboolboolboolboolfloat64float64float64float64float64float64float64float64float64float64boolboolboolboolboolboolboolboolboolboolboolboolboolboolboolboolfloat64float64float64float64float64float64boolboolboolfloat64float64float64float64boolboolfloat64float64boolfloat64boolint32boolboolbool
1032672138756096010.9247145683541581-0.59176436580465720FalseFalseFalseFalse0FalsenannannanFalseFalseFalseFalseFalseFalseFalse00000False302.07824529161996.973189193494798FalseFalseFalseFalse302.0302.07.07.0nannannannanTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse0.00.062227.823341707662227.82334170760.064578.7243694522764578.7243694522793.2780225034032512.6644990971281329.18386403977978893.2780225034032512.6644990971281329.18386403977978899.1286452284782813.57236482001539610.1185217096394699.1286452284782813.57236482001539610.11852170963946TrueTrueTrue-16.745234.165FalseFalse0.9992232335942818False140.033895301871614.00348477239475614.0628420151186628.2388221.93292830.8238879296.3918074514596.35095051323376485281.700515139082508.75279478138052.5859646939464562.5830495422575650.007841292908309802-10334.584-1037.8462-1033.4656TrueFalseFalseTrueFalseFalse-0.012095636866433779-0.0120956368664337790.0105438574789626930.0105438574789626932.58677439755440642.58677439755440642.5836282458873372.5836282458873370.0080274856164260270.008027485616426027TrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse0.71172654628753660.186885222792625430.0363120026886463170.9271551966667175FalseFalseFalseFalseFalse293.6355919454306293.63559194543066.1959861245202116.19598612452021159.85228317013894659.85228317013894612.44738438460041912.4473843846004196.0905183889765516.090518388976551TrueTrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse290.45408046050505290.454080460505055.7075663374915395.7075663374915399.814987817271349.8149878172713410.50573748009897610.5057374800989760.81574649488180880.8157464948818088TrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse49509.449509.412602.4951171875387.48968505859375TrueFalseFalse19684.720703125576.4306640625TrueFalseTrue24762.298828125763.2598266601562TrueFalseTruenannanTrueTrueTruenannannannannannanTrueTrueTrueTrueTrueTrueTrueTrueTruenannanTrueTruenannanTrueTruenannanTrueTruenannanTrueTruenannanTrueTrue68987.5792057631268987.5792057631268987.579205763121528.70039820733751528.70039820733751528.7003982073375FalseFalseFalse22.0151504894325180.40796970216668TrueFalseFalseFalse0.76362255092258690.0False9.143058898566178e-07-3.219591584765022e-07-3.220754105807934e-07-9.14083376714407e-07FalseFalseTrueFalseFalseFalseFalseFalseFalseFalseFalseFalse15870.37062788387815870.370627883878467.05706797399534467.0570679739953437.66925437.6692545073.97955073.979511481148TrueTrueFalseFalseTrueTrueFalse4969.36328125FalsenannannannannanTrueTrueFalseFalseFalseFalseFalseFalseFalseTruenannannannannannannannannannanTrueTrueFalseFalseFalseFalseFalseFalseFalseFalseTrueTrueTrueTrueFalseTrue1.08258086363497361.08258086363497361.08258086363497360.00.00.0FalseFalseFalse1.0030656380634531.0030656380634530.00.0FalseFalse1.03952974774543880.0FalsenanTrue536FalseFalseFalse
1032672138756096020.9254484276477247-0.59197551759531950FalseFalseFalseFalse0FalsenannannanFalseFalseFalseFalseFalseFalseFalse00000False966.87812892646394.692061937794775FalseFalseFalseFalse967.0967.05.05.0nannannannanTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse0.00.05975.4288132851445975.4288132851440.06208.7256328916356208.7256328916354.1935740548813025.931602550561768-0.04797959035636054.1935740548813025.931602550561768-0.04797959035636054.4198976480475276.127761463760328-0.15899716534365924.4198976480475276.127761463760328-0.1589971653436592TrueTrueTrue-10.095234.145FalseFalse0.9992258787650262False4.76108338484375358.749707107256086-0.464560657206049441.10308751.06013432.027205966.80828077304124.2329624907546117995.805704407395926.26738804731542.5904307632899232.57957495018665470.00032297919371630356-510.8769849.848595-938.86694FalseFalseFalseFalseFalseFalse-0.005738643818858691-0.0057386438188586910.006156011176350340.006156011176350342.5914535638429292.5914535638429292.5805028459752052.5805028459752050.000426467818445292860.00042646781844529286TrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse-0.26053282618522644-0.76244872808456420.38730487227439880.3292786777019501FalseFalseFalseFalseFalse966.5792529341873966.57925293418733.7229968684443363.7229968684443363.94072505733188553.94072505733188554.2145725812622294.214572581262229-0.4936044943366558-0.4936044943366558TrueTrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse966.5896515927808966.58965159278083.7336959117914893.7336959117914893.88745259119370353.88745259119370354.0787542533799474.078754253379947-0.1768385409252631-0.1768385409252631TrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse6650.33646650.33643969.925537109375370.71295166015625TrueFalseTrue6050.8828125558.085205078125TrueFalseTruenannanTrueTrueTruenannanTrueTrueTruenannannannannannanTrueTrueTrueTrueTrueTrueTrueTrueTruenannanTrueTruenannanTrueTruenannanTrueTruenannanTrueTruenannanTrueTrue6558.04619354101856558.04619354101856558.0461935410185561.9193697726267561.9193697726267561.9193697726267FalseFalseFalse3.701688087404823770.9561162879036TrueFalseFalseFalse0.76362255092258690.0False9.144391883771108e-07-3.2159874639830885e-07-3.2170178096378376e-07-9.142111919839602e-07FalseFalseTrueFalseFalseFalseFalseFalseFalseFalseFalseFalse4930.1189216667034930.118921666703445.07648931356005445.0764893135600537.65377437.6537741169.62951169.629510661066TrueTrueFalseFalseTrueTrueFalse4970.1279296875FalsenannannannannanTrueTrueFalseFalseFalseFalseFalseFalseFalseTruenannannannannannannannannannanTrueTrueFalseFalseFalseFalseFalseFalseFalseFalseTrueTrueTrueTrueFalseTrue1.08227006243830081.08227006243830081.08227006243830080.00.00.0FalseFalseFalse1.0016297326310531.0016297326310530.00.0FalseFalse1.04046399648887360.0FalsenanTrue114FalseFalseFalse
1032672138756096030.9269913700400192-0.59242269982614250FalseFalseFalseFalse0FalsenannannanFalseFalseFalseFalseFalseFalseFalse00000False2365.98815126303275.262593792475203FalseFalseFalseFalse2366.02366.05.05.0nannannannanTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse0.00.05438.3546402248615438.3546402248610.06033.381938117776033.381938117775.6994337403326968.913699526502263-2.88648441621657665.6994337403326968.913699526502263-2.88648441621657666.96456608500630910.4995510903182-3.29519352757237056.96456608500630910.4995510903182-3.2951935275723705TrueTrueTrue3.8949999999999996234.145FalseFalse0.9992270988980708False5.928015730066741510.592557274343937-2.93548761124640921.81535221.82985153.2437872365.78570261087044.7906029557265876308.080652171746965.87032758630162.6107247496454442.5560098159092854-0.006351557545510087-876.6974434.13077-1566.539FalseFalseFalseFalseFalseFalse0.0011377273394828080.0011377273394828088.998408803773117e-058.998408803773117e-052.61190910002655352.61190910002655352.557355270130942.55735527013094-0.006370661352534155-0.006370661352534155TrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse-0.28358688950538635-0.60974246263504030.397877603769302370.595458447933197FalseFalseFalseFalseFalse2365.6167983235132365.6167983235134.7532449072261614.7532449072261615.3962883906135045.3962883906135047.8208330001875497.820833000187549-2.696700597699227-2.696700597699227TrueTrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse2365.63964576822952365.63964576822954.5991543039110564.5991543039110564.641880882146984.641880882146986.1101421442298166.110142144229816-1.0503010545463443-1.0503010545463443TrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse5092.4535092.4532722.337158203125368.57611083984375TrueFalseTrue4301.5556640625556.2797241210938TrueFalseTruenannanTrueTrueTruenannanTrueTrueTruenannannannannannanTrueTrueTrueTrueTrueTrueTrueTrueTruenannanTrueTruenannanTrueTruenannanTrueTruenannanTrueTruenannanTrueTrue6084.4442983124426084.4442983124426084.444298312442663.5776364563453663.5776364563453663.5776364563453FalseFalseFalse3.220423252157287869.22530651840734TrueFalseFalseFalse0.76362255092258690.0False9.147165169209948e-07-3.208399587450542e-07-3.2091477127155535e-07-9.144781813199403e-07FalseFalseTrueFalseFalseFalseFalseFalseFalseFalseFalseFalse3612.855956386343612.85595638634443.8986925011886443.898692501188638.14980738.1498071126.18811126.188110661066TrueTrueFalseFalseTrueTrueFalse4977.0947265625FalsenannannannannanTrueTrueFalseFalseFalseFalseFalseFalseFalseTruenannannannannannannannannannanTrueTrueFalseFalseFalseFalseFalseFalseFalseFalseTrueTrueTrueTrueFalseTrue1.08426529762537241.08426529762537241.08426529762537240.00.00.0FalseFalseFalse0.99655933851460210.99655933851460210.00.0FalseFalse1.04119524896537950.0FalsenanTrue102FalseFalseFalse
1032672138756096040.9276920168806325-0.59262528175209550FalseFalseFalseFalse0FalsenannannanFalseFalseFalseFalseFalseFalseFalse00000False3001.1182583811324.45384391397321FalseFalseFalseFalse3001.03001.05.05.0nannannannanTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse0.00.04413.2094684669944413.2094684669940.04782.0411654687174782.0411654687176.1859718278812985.4888276371119350.90858245711018196.1859718278812985.4888276371119350.90858245711018197.3318908937976415.4549224630652361.07961614205204457.3318908937976415.4549224630652361.0796161420520445TrueTrueTrue10.245000000000001234.145FalseFalse0.9992258341503385False5.62063511084806412.0903759754663480.4707545063951417nannannan3001.16977053429174.298059195636776nannan2.6250514003606142.5383340304755633-0.005331617363978338nannannanTrueFalseTrueFalseFalseFalse0.0013047381603428220.001304738160342822-0.0012335774629894658-0.00123357746298946582.6263034924820452.6263034924820452.5396541896139912.539654189613991-0.005364325597603657-0.005364325597603657TrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse1.03610002994537350.107212536036968230.31264555454254150.38241615891456604FalseFalseFalseFalseFalse3000.5811523383643000.5811523383642.12887020706070152.12887020706070156.2480411758893786.2480411758893782.35680068289412772.35680068289412770.208086719205863660.20808671920586366TrueTrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse3000.68975203014723000.68975203014722.33245889053306452.33245889053306455.0946988157399585.0946988157399583.29972580289202443.29972580289202440.245644992229735850.24564499222973585TrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse8359.0898359.0893185.5654296875369.5827941894531TrueFalseTrue6842.51171875559.4461059570312TrueFalseTruenannanTrueTrueTruenannanTrueTrueTruenannannannannannanTrueTrueTrueTrueTrueTrueTrueTrueTruenannanTrueTruenannanTrueTruenannanTrueTruenannanTrueTruenannanTrueTrue4866.38845037785454866.38845037785454866.3884503778545541.4821543069697541.4821543069697541.4821543069697FalseFalseFalse2.768696513061779669.07748409063854TrueFalseFalseFalse0.76362255092258690.0False9.148411771414659e-07-3.2049495061851155e-07-3.205567525311946e-07-9.14598720749526e-07FalseFalseTrueFalseFalseFalseFalseFalseFalseFalseFalseFalse4062.7994682644044062.799468264404444.10415189229656444.1041518922965638.41715238.4171521400.34481400.344810661066TrueTrueFalseFalseTrueTrueFalse5001.1796875FalsenannannannannanTrueTrueFalseFalseFalseFalseFalseFalseFalseTruenannannannannannannannannannanTrueTrueFalseFalseFalseFalseFalseFalseFalseFalseTrueTrueTrueTrueFalseTrue1.0863587222493711.0863587222493711.0863587222493710.00.00.0FalseFalseFalse0.993349364501160.993349364501160.00.0FalseFalse1.04097154121346570.0FalsenanTrue108FalseFalseFalse
1032672138756096050.9269449849148816-0.59241235369074150FalseFalseFalseFalse0FalsenannannanFalseFalseFalseFalseFalseFalseFalse00000False2325.3444479049247.810667233371073FalseFalseFalseFalse2325.02325.08.08.0nannannannanTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse0.00.02920.535268567892920.535268567890.03107.2487451806433107.2487451806434.0694785239607095.9468503042418051.11854512834992954.0694785239607095.9468503042418051.11854512834992955.406414725238689.2539706537937971.64744303179837085.406414725238689.2539706537937971.6474430317983708TrueTrueTrue3.4849999999999994234.175FalseFalse0.9992269437051812False5.9578348068756636.4177503235751710.43381666912553762.98532682.19629293.21577932325.11209346376248.1523147875704863544.387363794507888.00333964502612.6098310887606962.557077033904479-0.006310633307166641-1325.4901-96.51488-1427.8114FalseFalseFalseFalseFalseFalse0.0010676945034902020.0010676945034902020.000203961328823609730.000203961328823609732.6110141604792452.6110141604792452.5584236001046912.558423600104691-0.006330249209456125-0.006330249209456125TrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse-0.42834231257438660.54918432235717770.90220779180526730.4526713788509369FalseFalseFalseFalseFalse2324.97780615179272324.97780615179277.83856744506757957.83856744506757953.7002412467786263.7002412467786265.9484231359984645.9484231359984641.46071893241677621.4607189324167762TrueTrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse2324.86778054637132324.86778054637137.8490165066227967.8490165066227964.3649737872122584.3649737872122585.1886874317681995.1886874317681990.336170357848254940.33617035784825494TrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse2915.66282915.66281782.308349609375366.8838806152344TrueFalseFalse2825.722412109375554.0860595703125TrueFalseTrue3624.3994140625741.630126953125TrueFalseTruenannanTrueTrueTruenannannannannannanTrueTrueTrueTrueTrueTrueTrueTrueTruenannanTrueTruenannanTrueTruenannanTrueTruenannanTrueTruenannanTrueTrue3209.93096042132543209.93096042132543209.9309604213254578.7540953399505578.7540953399505578.7540953399505FalseFalseFalse3.42252677704316367.39615649574895TrueFalseFalseFalse0.76362255092258690.0False9.147081738319671e-07-3.208627722345953e-07-3.2093844095205727e-07-9.144700563950948e-07FalseFalseTrueFalseFalseFalseFalseFalseFalseFalseFalseFalse2264.49300182477872264.4930018247787440.8169037542639440.816903754263938.45164538.4516451090.43091090.430911891189TrueTrueFalseFalseTrueTrueFalse4974.65185546875FalsenannannannannanTrueTrueFalseFalseFalseFalseFalseFalseFalseTruenannannannannannannannannannanTrueTrueFalseFalseFalseFalseFalseFalseFalseFalseTrueTrueTrueTrueFalseTrue1.08415008841652941.08415008841652941.08415008841652940.00.00.0FalseFalseFalse0.99674327251170340.99674327251170340.00.0FalseFalse1.04120519211665140.0FalsenanTrue49FalseFalseFalse
1032672138756096060.9265856981697587-0.59231039511158680FalseFalseFalseFalse0FalsenannannanFalseFalseFalseFalseFalseFalseFalse00000False2000.245568966357710.053672511092675FalseFalseFalseFalse2000.02000.010.010.0nannannannanTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse0.0nannannannannannannannannannannannannannannannannannanTrueTrueTrue0.23499999999999943234.195FalseFalse0.9992269829650389False3.10459955719502646.4104453442556830.6263172318264537nannannan2000.182250981041810.074806596065653nannan2.6038249131742562.5642974259993156-0.00575676803962987nannannanTrueFalseTrueFalseFalseFalse0.00020869798117928440.00020869798117928440.00125232110976369880.00125232110976369882.60497483343854072.60497483343854072.56565778521467142.5656577852146714-0.00576134090619946-0.00576134090619946TrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalsenannannannanTrueFalseFalseFalseTruenannannannannannannannannannanTrueTrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueTrueTrueFalseFalseFalse1998.24808937674151998.248089376741510.12483999711579410.12483999711579412.07085707063678412.0708570706367845.6478107362555645.647810736255564-1.8039398284917267-1.8039398284917267TrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse796.54395796.543952411.276611328125369.39739990234375TrueFalseFalse2932.43310546875555.553955078125TrueFalseTrue3648.918212890625743.364990234375TrueFalseTrue3352.5598144531251117.218994140625TrueFalseTruenannannannannannanTrueTrueTrueTrueTrueTrueTrueTrueTruenannanTrueTruenannanTrueTruenannanTrueTruenannanTrueTruenannanTrueTruenannannannannannanTrueTrueTrue-3.339947097579027570.02693276067228TrueFalseFalseFalse0.76362255092258690.0False9.146438723964611e-07-3.2103956156447887e-07-3.211218517868279e-07-9.144079737770295e-07FalseFalseTrueTrueTrueFalseFalseFalseTrueTrueFalseFalse2866.02491470283032866.0249147028303443.3539028197346443.353902819734638.36424638.3642461365.93691365.936912711271TrueTrueFalseFalseTrueTrueTruenanTrue2819.7032575120251009.98837829683613.12928779.6501762.0146725TrueFalseFalseFalseFalseFalseFalseFalseFalseTruenannannannannannannannannannanTrueTrueFalseFalseFalseFalseFalseFalseFalseFalseTrueTrueTrueTrueFalseTrue1.0833866632910371.0833866632910371.0833866632910370.00.00.0FalseFalseFalse0.99814292366368120.99814292366368120.00.0FalseFalse1.04117848636166750.0FalsenanTrue102FalseFalseFalse
1032672138756096070.9279578862465262-0.59270822605891750FalseFalseFalseFalse0FalsenannannanFalseFalseFalseFalseFalseFalseFalse00000False3244.10251517529510.841594234504027FalseFalseFalseFalse3244.03244.011.011.0nannannannanTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse0.00.04128.5244897321784128.5244897321780.04840.7691093217854840.7691093217854.8641040538615568.577637278773196-0.57302720811696764.8641040538615568.577637278773196-0.57302720811696767.602240348427466511.556408989487583-1.7149351616354517.602240348427466511.556408989487583-1.714935161635451TrueTrueTrue12.674999999999997234.205FalseFalse0.9992246539415115False4.80340451328059943.897408835238786.4028886443810121.80732394.222272416.5167923243.81746130933810.8040029628362066897.2387606193671297.57385796565472.63117026925314822.530680074537101-0.004236912967908023-1172.5681-1563.021-10715.878TrueFalseFalseTrueFalseFalse0.00087739464015612610.0008773946401561261-0.0015008183482301263-0.00150081834823012632.63249419066470442.63249419066470442.5319484248833242.531948424883324-0.004274589696320623-0.004274589696320623TrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse-0.23863166570663452-0.201281517744064330.5857273340225220.57541823387146FalseFalseFalseFalseFalse3243.67355275123833243.673552751238310.33212289758826910.3321228975882695.29608198929886955.29608198929886957.3459407010864097.345940701086409-0.782310498013342-0.782310498013342TrueTrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse3243.6761539456953243.67615394569510.34168554578713610.3416855457871365.6177266132053995.6177266132053996.5968988527818856.596898852781885-0.5705200310315203-0.5705200310315203TrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse4096.7364096.7362138.3203125368.0954895019531TrueFalseFalse3161.35400390625555.3197631835938TrueFalseTrue4152.38330078125743.0721435546875TrueFalseTrue4434.646972656251116.91943359375TrueFalseTruenannannannannannanTrueTrueTrueTrueTrueTrueTrueTrueTruenannanTrueTruenannanTrueTruenannanTrueTruenannanTrueTruenannanTrueTrue4540.1293190593834540.1293190593834540.129319059383687.4486675396324687.4486675396324687.4486675396324FalseFalseFalse0.48108553217788269.13665513977573TrueFalseFalseFalse0.76362255092258690.0False9.148881470099119e-07-3.2036392471659224e-07-3.20420750964949e-07-9.146440849825962e-07FalseFalseTrueFalseFalseFalseFalseFalseFalseFalseFalseFalse2709.3528122882462709.352812288246443.0171696814492443.017169681449238.9384538.938451357.71531357.715313121312TrueTrueFalseFalseTrueTrueFalse4994.6396484375False5341.2990202569251374.6957052962564.2356819.6501762.0132892TrueFalseFalseFalseFalseFalseFalseFalseFalseTruenannannannannannannannannannanTrueTrueFalseFalseFalseFalseFalseFalseFalseFalseTrueTrueTrueTrueFalseTrue1.08734410395648461.08734410395648461.08734410395648460.00.00.0FalseFalseFalse0.99197170951797340.99197170951797340.00.0FalseFalse1.0408105571228730.0FalsenanTrue92FalseFalseFalse
1032672138756096080.9288567562730878-0.59296958237280020FalseFalseFalseFalse0FalsenannannanFalseFalseFalseFalseFalseFalseFalse00000False4059.122282135131612.92229541569106FalseFalseFalseFalse4059.04059.013.013.0nannannannanTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse0.00.010072.83606958370710072.8360695837070.010239.11888455093710239.1188845509375.8546486963574243.60398168837786330.64558194410332095.8546486963574243.60398168837786330.64558194410332096.4734660880268913.79065109573473040.73445350383513926.4734660880268913.79065109573473040.7344535038351392TrueTrueTrue20.825000000000003234.225FalseFalse0.9992206757010658False5.9583226308234843.58807068150610140.59059355779110080.92972990.514309470.559878474059.155995852674612.97836929150550310250.686679482045799.752800492452.65669660823751162.4998856579814210.0020268916808050116-371.77704-36.850834-223.8822FalseFalseFalseFalseFalseFalse-0.0025847692318166082-0.0025847692318166082-0.001458850769237685-0.0014588507692376852.6574325135249052.6574325135249052.50107987050278832.50107987050278830.00197947754793370260.0019794775479337026TrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse0.60143792629241940.394049912691116330.223039999604225160.4193374812602997FalseFalseFalseFalseFalse4059.31400232282934059.314002322829312.95745549847161712.9574554984716175.7637848091851455.7637848091851453.6293110409141733.6293110409141730.66180701252652320.6618070125265232TrueTrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse4059.3231956953154059.32319569531512.93239514766792712.9323951476679275.2511424813333025.2511424813333024.2116460278431464.2116460278431460.29069585098670470.2906958509867047TrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse10328.27610328.2766203.62841796875375.51361083984375TrueFalseFalse8800.7451171875562.71826171875TrueFalseTrue10505.59375749.462890625TrueFalseTrue11172.27246093751121.661376953125TrueFalseTrue11914.502929687511914.502929687511914.50292968751495.45349121093751495.45349121093751495.4534912109375TrueTrueTrueFalseFalseFalseTrueTrueTruenannanTrueTruenannanTrueTruenannanTrueTruenannanTrueTruenannanTrueTrue11112.85613592787211112.85613592787211112.856135927872613.1696638374995613.1696638374995613.1696638374995FalseFalseFalse0.187697850449760469.78741698734636TrueFalseFalseFalse0.76362255092258690.0False9.150464792708049e-07-3.199207556886229e-07-3.199606470217182e-07-9.147977814022644e-07FalseFalseTrueFalseFalseFalseFalseFalseFalseFalseFalseFalse8014.9494230814188014.949423081418454.67643427027144454.6764342702714439.32512339.3251231135.20831135.208311221122TrueTrueFalseFalseTrueTrueFalse4988.53271484375False11089.299501730431070.51785308306883.30451449.6501762.0119884TrueFalseFalseFalseFalseFalseFalseFalseFalseTruenannannannannannannannannannanTrueTrueFalseFalseFalseFalseFalseFalseFalseFalseTrueTrueTrueTrueFalseTrue1.091476974908511.091476974908511.091476974908510.00.00.0FalseFalseFalse0.98675219346233930.98675219346233930.00.0FalseFalse1.03985199328073550.0FalsenanTrue209FalseFalseFalse
1032672138756096090.9268294346291025-0.59238403876774980FalseFalseFalseFalse0FalsenannannanFalseFalseFalseFalseFalseFalseFalse00000False2222.019454141459412.990241644867448FalseFalseFalseFalse2222.02222.013.013.0nannannannanTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse0.0nannannannannannannannannannannannannannannannannannanTrueTrueTrue2.4549999999999983234.225FalseFalse0.9992267005255477False44.3037670460534177.383944829235340.294816526914154nannannan2221.89850099103713.031518564156837nannan2.60772431821625352.559601241547738-0.006181152974813394nannannanTrueFalseTrueFalseTrueFalse0.00085485190265899290.00085485190265899290.00050733400232338970.00050733400232338972.60889704987309122.60889704987309122.5609517692527112.560951769252711-0.00619636677569498-0.00619636677569498TrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalsenannannannanTrueFalseFalseFalseTruenannannannannannannannannannanTrueTrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueTrueTrueFalseFalseFalse2221.83340661482862221.833406614828612.76661065068071612.7666106506807163.46561137783782723.46561137783782724.2911858080543144.2911858080543140.61517129915170340.6151712991517034TrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse2595.61182595.61181740.4053955078125366.7597961425781TrueFalseFalse2713.58837890625553.7978515625TrueFalseTrue2994.355224609375740.8711547851562TrueFalseTrue1994.38146972656251114.0484619140625TrueFalseTrue1490.10156251490.10156251490.10156251488.26843261718751488.26843261718751488.2684326171875TrueTrueTrueFalseFalseFalseTrueTrueTruenannanTrueTruenannanTrueTruenannanTrueTruenannanTrueTruenannanTrueTruenannannannannannanTrueTrueTrue2.17247451812716869.2785613230613TrueFalseFalseFalse0.76362255092258690.0False9.146874266523566e-07-3.2091961261684953e-07-3.209974128849331e-07-9.144499153843109e-07FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse2294.9925556138862294.992555613886440.92998955431887440.9299895543188738.4885438.488541357.64091357.640913941394TrueTrueFalseFalseTrueTrueTruenanTruenannannannan2.0145023TrueFalseFalseFalseFalseTrueFalseTrueTrueTruenannannannannannannannannannanTrueTrueFalseFalseFalseFalseFalseFalseFalseFalseTrueTrueTrueTrueFalseTrue1.08387913264420831.08387913264420831.08387913264420830.00.00.0FalseFalseFalse0.99719692891685760.99719692891685760.00.0FalseFalse1.04121725881904430.0FalsenanTrue49FalseFalseFalse
.........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
1032672138756121400.9235712685171629-0.5953598194065913103267213875611459FalseFalseFalseFalse0True606.03837.07367.797301208846FalseFalseFalseFalseFalseFalseFalse6063837390012False605.97033101558223836.142424331745FalseFalseFalseFalse606.1515114510083606.15151145100833836.7443944033153836.7443944033150.370082440.370082440.377049420.37704942FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse0.062853863599734980.0336410979112882218261.06577176259818896.773995968460.0372754700937577618294.25127374395419002.5814295243876.5942075102637987.4287299686424940.154383930934756837.5797326462171447.828756111440138-0.247477201473635926.7023454201581287.42278005889150450.26045306737105187.79896316468764457.940292826603168-0.18230188753278337FalseFalseFalse-13.703484885489917272.46244394403317FalseFalse0.9989513232957844False6.6449634110562257.4943500039890.198556753793356440.73594740.552871640.83001924606.14581540728313836.726258899260318491.0453811444751023.96629450599662.6295941730156742.54822112101530030.007628977927055509-376.7927-11.258863-424.95584FalseFalseFalseFalseFalseFalse-0.0019205064115794812-0.0019205064115794812-0.0016361882453566068-0.00163618824535660682.63085000264297182.63085000264297182.54940889092813672.54940889092813670.0075936033395907310.007593603339590731FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse-0.132393568754196170.0293668396770954130.102626346051692960.6032707095146179FalseFalseFalseFalseFalse606.1397954535631606.13979545356313836.70755027516863836.70755027516866.6343666181864416.6343666181864417.5011690299414457.5011690299414450.180754850187999640.18075485018799964FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse606.1331007397089606.13310073970893836.7099242187423836.7099242187426.8270796260470926.8270796260470927.2031636473892437.2031636473892430.078720691310663980.07872069131066398FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse18427.62518427.6258891.091796875383.871826171875FalseFalseFalse13863.6162109375569.4628295898438FalseFalseFalse16381.974609375756.4150390625FalseFalseFalse20477.8730468751132.5230712890625FalseFalseFalse22053.8554687522053.8554687522053.855468751508.0949707031251508.0949707031251508.094970703125FalseFalseFalseFalseFalseFalseFalseFalseFalse26501.535151946362145.8847269204534FalseFalse32123.5567561266943141.147778784701FalseFalse36819.372959929524388.440962744753FalseFalse32230.6974353073166261.14783641883FalseFalse22896.944732922138761.057706672662FalseFalse20057.99944626715320057.99944626715320057.999446267153762.9562016905401762.9562016905401762.9562016905401FalseFalseFalse6.923344100922002569.5306120746467FalseFalseFalseFalse0.76362255092258690.0False9.140136484295671e-07-3.224966954014707e-07-3.2264100759973933e-07-9.137069727286295e-07FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse11204.23728084008511204.237280840085461.5021493876077461.502149387607738.3240738.324071632.78471632.784716811681FalseFalseFalseFalseFalseFalseFalse5001.3349609375False24557.1885921544241741.86261088327075.31685315.9335322.0164642FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse-0.0586164092967465-0.05861640929674650.0137418947529113210.0137418947529113212.6835993628593452.6835993628593452.4345916287665822.4345916287665820.0386986161985492650.038698616198549265FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueTrueTrueFalse1.08489167246961231.08489167246961231.08489167246961230.00.00.0FalseFalseFalse1.0012267123404631.0012267123404630.00.0FalseFalse1.03963888247115240.0False1.0False466FalseFalseFalse
1032672138756121410.9235602301656953-0.5953609675123107103267213875611459FalseFalseFalseFalse0True598.03841.07232.183496849168FalseFalseFalseFalseFalseFalseFalse5983841390112False597.07229643473193840.290474894857FalseFalseFalseFalse597.6444687313101597.64446873131013840.99283869939933840.99283869939930.291707430.291707430.218765620.21876562FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse0.07574763811610170.0262897056256837814407.34578096125414796.3371284054060.02952911739751018514375.0812169106914812.4806984021626.19897799432321955.19081863353693150.00081641633427288687.0797559652083855.467903467856172-0.353444680218444556.3036408523362545.153445285712464-0.00355745553784097637.3171333211728085.468802195408537-0.374344360245312FalseFalseFalse-13.7885553126869272.504928386994FalseFalse0.9989509638401938False6.24003090319517555.2425559192484690.00137362420885572740.78515240.508882050.6596451597.62801008681883840.97102733009414592.242896016103918.03504328545932.62991667253403842.54780451950797330.007723760197919267-360.39868-0.079334915-302.78864FalseFalseFalseFalseFalseFalse-0.001964408432854725-0.001964408432854725-0.0016356312548850838-0.00163563125488508382.63117378623855022.63117378623855022.5489899769312642.5489899769312640.0076879962669800770.007687996266980077FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse0.2587997019290924-0.0171479173004627230.1331830918788910.5068771839141846FalseFalseFalseFalseFalse597.6109036688426597.61090366884263840.94900355419263840.94900355419266.2311986229348736.2311986229348735.2397978513353525.239797851335352-0.010367956161029281-0.010367956161029281FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse597.6105980736928597.61059807369283840.95407138576373840.95407138576375.9992304964931345.9992304964931345.664780058608225.66478005860822-0.008771588754842853-0.008771588754842853FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse14725.75814725.7588055.4794921875381.20623779296875FalseFalseFalse11629.4638671875566.2975463867188FalseFalseFalse14212.3857421875753.9130249023438FalseFalseFalse17377.80468751130.64306640625FalseFalseFalse20000.5820312520000.5820312520000.582031251507.77624511718751507.77624511718751507.7762451171875FalseFalseFalseFalseFalseFalseFalseFalseFalse25305.963761076332144.049365827538FalseFalse31170.005555108193136.9578887671473FalseFalse34718.997660711414382.258038067479FalseFalse23758.171062842016259.843304958737FalseFalse14656.1435063630348758.893810922451FalseFalse15823.61569061044815823.61569061044815823.615690610448680.5499889720522680.5499889720522680.5499889720522FalseFalseFalse8.73573992725892368.14924514259128FalseFalseFalseFalse0.76362255092258690.0False9.140115287154411e-07-3.2250208283523724e-07-3.2264663280373596e-07-9.137048357016168e-07FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse10236.20604520386410236.206045203864460.10005453111586460.1000545311158638.28679338.2867931574.62381574.623816811681FalseFalseFalseFalseFalseFalseFalse5022.40771484375False23600.1291432780851878.19259075008845.724269414.342422.0164433FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse-0.007539050497712196-0.0075390504977121960.0235384906163744740.0235384906163744742.43060231716709872.43060231716709872.849467743061022.849467743061020.109107470739512560.10910747073951256FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueTrueTrueFalse1.08491374870314731.08491374870314731.08491374870314730.00.00.0FalseFalseFalse1.00120864287866371.00120864287866370.00.0FalseFalse1.0396080946747810.0False1.0False466FalseFalseFalse
1032672138756121420.925871335981735-0.5960717102580231103267213875611488FalseFalseFalseFalse0True2703.03881.02346.600543684558FalseFalseFalseFalseFalseFalseFalse27033881357912False2703.25874231428633880.1700696840267FalseFalseFalseFalse2703.26255166862762703.26255166862763880.7108202098713880.7108202098710.43109220.43109220.49412330.4941233FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse0.146304155785235760.062259152292796772549.11435119216052718.35695056347460.092086397365415682734.77806549007073012.15672675713862.32973784515478633.701646152656334-0.37616538842944092.7242820128270693.7393384852773117-0.367931500768858442.5462712032888495.121907197229965-0.48744352595146853.207497065415865.3730693185646325-0.490104678625877FalseFalseFalse7.267625516686277272.9021082020987FalseFalse0.998949845247297False2.1545311363173533.341171238198982-0.310668024966456351.04517570.92648691.62082162703.2619283314233880.72564479200262446.3030487778924593.35791163957222.6071240353165172.602112849643959-0.007785320742139194-310.081644.711555-480.86365FalseFalseFalseFalseFalseFalse-0.0014423750817513792-0.00144237508175137920.00102059850632940650.00102059850632940652.60826331259248172.60826331259248172.60320569053638762.6032056905363876-0.007774107611293708-0.007774107611293708FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse0.484223276376724240.25760862231254581.97736096382141110.1304190307855606FalseFalseFalseFalseFalse2703.28957030404442703.28957030404443880.7467943635733880.7467943635732.35165250774098982.35165250774098983.7777276850545413.777727685054541-0.38763437384729854-0.38763437384729854FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse2703.3117569140422703.3117569140423880.7508583505093880.7508583505092.87326729884075332.87326729884075333.1610869269609653.161086926960965-0.1251216451905538-0.1251216451905538FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse2596.10572596.10571812.7203369140625371.2247619628906FalseFalseFalse2745.681884765625554.6834106445312FalseFalseFalse2594.41650390625742.0746459960938FalseFalseFalse3514.1113281251116.953125FalseFalseFalse3453.105957031253453.105957031253453.105957031251491.32312011718751491.32312011718751491.3231201171875FalseFalseFalseFalseFalseFalseFalseFalseFalse3347.26603519171482129.3874286491555FalseFalse4492.7195487245923130.4637070242634FalseFalse4425.9716558679944381.646395729239FalseFalse2509.1703609451656256.136248536624FalseFalse-3538.9298420920978756.041536012212FalseFalse2797.9427595614092797.9427595614092797.942759561409476.950517758965476.950517758965476.950517758965FalseFalseFalse0.560405023432508968.03603185962633FalseFalseFalseFalse0.76362255092258690.0False9.144292444997061e-07-3.213662839533589e-07-3.214616499022544e-07-9.141035064357164e-07FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse2653.5398915084242653.539891508424446.4668998144583446.466899814458338.3320538.332051586.79881586.798816811681FalseFalseFalseFalseFalseFalseFalse4985.2978515625False3073.1265430818576842.65001038513832.611611610.3145462.0226974FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse0.066711117246541110.066711117246541110.39822565710164780.39822565710164781.90002754995368961.90002754995368964.2677845398316994.2677845398316990.86837904271304470.8683790427130447FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueTrueTrueFalse1.0866696514782071.0866696514782071.0866696514782070.00.00.0FalseFalseFalse1.00625758255553271.00625758255553270.00.0FalseFalse1.0429750666270790.0False1.0False118FalseFalseFalse
1032672138756121430.9258651021071679-0.5960706069268733103267213875611488FalseFalseFalseFalse0True2698.03881.02796.2492255269276FalseFalseFalseFalseFalseFalseFalse26983881358012False2697.25313622404343881.209982633738FalseFalseFalseFalse2697.86130514073152697.86130514073153881.39337535862753881.39337535862750.464804650.464804650.51686710.5168671FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse0.225478991738138nannannannannannannannannannannannannannannannannannanTrueFalseTrue7.2136130514073145272.90893375358627FalseFalse0.9989498038203034False1.29876593409181473.0128621633101194-0.70559209614218470.73788940.84373721.71174732697.890688532273881.36967935525441718.0934436698444488.06443392491762.6071568539886212.602033752910331-0.007785641714087215-180.068897.82758-417.7215FalseFalseFalseFalseFalseFalse-0.001419165112565679-0.0014191651125656790.00100147523971827470.00100147523971827472.60829748713820652.60829748713820652.6031262205721692.603126220572169-0.007775171518778442-0.007775171518778442FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalsenannannannanTrueFalseFalseFalseTruenannannannannannannannannannanTrueTrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueTrueTrueFalseFalseFalse2697.74619382499852697.74619382499853881.52219234858743881.52219234858741.53431358828401241.53431358828401241.8171049651966241.817104965196624-0.034446558867707394-0.034446558867707394FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse1615.99351615.99351591.117919921875370.24688720703125FalseFalseFalse1397.3209228515625553.1400756835938FalseFalseFalse1473.027587890625741.220458984375FalseFalseFalse1894.92968751116.368408203125FalseFalseFalse1964.4377441406251964.4377441406251964.4377441406251491.27624511718751491.27624511718751491.2762451171875FalseFalseFalseFalseFalseFalseFalseFalseFalse2718.05065707489852128.47110403751FalseFalse895.30048493668443128.636374051027FalseFalse1447.7310737185184378.661805509903FalseFalse-781.17971562221656256.0279871712155FalseFalse-5533.8562909848998758.787648765774FalseFalsenannannannannannanTrueTrueTrue-0.25340633293137368.44640157621302FalseFalseFalseFalse0.76362255092258690.0False9.144281105560828e-07-3.213693464979939e-07-3.21464846252699e-07-9.14102398607938e-07FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse2140.62362605391672140.6236260539167445.4784546030038445.478454603003838.36353338.3635331508.76681508.766816811681FalseFalseFalseFalseFalseFalseTruenanTrue2019.61366552603043149.15389001971439.6501769.6501762.0226884TrueFalseFalseFalseFalseFalseFalseFalseFalseTruenannannannannannannannannannanTrueTrueFalseFalseFalseFalseFalseFalseTrueTrueFalseFalseTrueTrueTrueFalse1.08665680358368771.08665680358368771.08665680358368770.00.00.0FalseFalseFalse1.0062574090283141.0062574090283140.00.0FalseFalse1.04296997406275450.0FalsenanTrue118FalseFalseFalse
1032672138756121440.9265895683095392-0.5963038800358702103267213875611492TrueTrueFalseTrue0FalsenannannanFalseFalseFalseFalseFalseFalseFalse33613905390413False3361.07367242355853904.187767319161FalseFalseFalseFalse3361.29121761109763361.29121761109763904.733326369213904.733326369210.00274870380.00274870380.0027653050.002765305FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse9.57843654090244e-065.480463598050989e-061767136.09365181651767145.77842992755.480463598050989e-061767136.09365181651767145.77842992752.5615025038954512.571803259477604-0.001302208226764752.56151115979070142.5718145095880494-0.00130233818681103072.5615025038954512.571803259477604-0.001302208226764752.56151115979070142.5718145095880494-0.0013023381868110307FalseFalseFalse13.847912176110974273.1423332636921FalseFalse0.9989460422172318False2.56951969140400842.5799742184673082-0.00079418648818687520.0095083540.00673708550.009547043361.28765105127333904.73592371479251787018.46254336793306.37746172936572.60698738438681142.60934269585432-0.00706209838004603-15.7191040.004858457-15.783058FalseFalseFalseFalseFalseFalse-0.005568665427290398-0.0055686654272903980.0039782235489838060.0039782235489838062.6081145302050672.6081145302050672.6103624942368252.610362494236825-0.006976878668896662-0.006976878668896662FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalsenannannannanTrueFalseFalseFalseTrue3361.2840317980433361.2840317980433904.73848020806333904.73848020806332.5704397252640712.5704397252640712.5809694597287132.580969459728713-0.0009302849409205166-0.0009302849409205166FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse3361.2840280770093361.2840280770093904.7384700494973904.7384700494972.57317271752124382.57317271752124382.57821643606938982.5782164360693898-0.0004431014763222051-0.0004431014763222051FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse1787381.01787381.01478593.6251504.89453125FalseFalseFalse1776093.51704.4044189453125FalseFalseFalse1868752.1251813.32958984375FalseFalseFalse1924441.02016.2958984375FalseFalseFalse1942410.51942410.51942410.52251.3105468752251.3105468752251.310546875FalseFalseFalseFalseFalseFalseFalseFalseFalse1945261.4841561022719.594331267102FalseFalse1947119.80079385643561.355632263243FalseFalse1948751.56065231564699.408912091698FalseFalse1962282.84778624776484.777295464922FalseFalse1957990.00520348558920.675862607222FalseFalse1946273.2624777321946273.2624777321946273.2624777322428.32971001438142428.32971001438142428.3297100143814FalseFalseFalse4.60971819423139164.37166032764003FalseFalseFalseFalse0.76362255092258690.0False9.145570051282884e-07-3.210126047504258e-07-3.21092368550133e-07-9.142258357693344e-07FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse1962121.77433904731962121.77433904732114.4176866544432114.41768665444338.41690438.4169044789.14789.116811681FalseFalseFalseFalseFalseFalseTruenanTrue1941880.38164842361877.87467352178242.3209459.6293912.0240753FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse-0.0054265918106466415-0.00542659181064664150.00267892896317789560.00267892896317789562.6035528957846472.6035528957846472.61199594822309632.6119959482230963-0.009797350135585529-0.009797350135585529FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueTrueTrueFalse1.08891516965634841.08891516965634841.08891516965634840.00.00.0FalseFalseFalse1.00669747306218431.00669747306218430.00.0FalseFalse1.04323745960781020.0False0.0False613FalseFalseFalse
1032672138756121450.9265954167986404-0.5963200647632166103267213875611492FalseFalseFalseFalse0True3372.03919.08809.466285298278FalseFalseFalseFalseFalseFalseFalse33723919390513False3371.1591223589673918.166147674122FalseFalseFalseFalse3371.51200328083273371.51200328083273918.8800460745073918.8800460745070.153120830.153120830.14119930.1411993FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse0.189226674902855250.0686316790092764712549.33265070215413474.0814862084460.0712835949535438612496.82425345764813456.0175588074534.4409202613036733.784180428883775-0.164546884210803024.68546190249060154.0719645117201310.070741017759156194.4927730273590643.6980438155942688-0.187865152828110844.7748453060876124.0262237529925480.07032632027175804FalseFalseFalse13.950120032808329273.28380046074506FalseFalse0.9989449138932726False4.4928911378914133.804064264185487-0.18821956692340090.54897920.357562120.464812553371.50712334250873918.888013812708312701.915124284744776.01341522901032.607270527896242.609497276801851-0.00712850140210483-213.007638.923474-180.35039FalseFalseFalseFalseFalseFalse-0.0056961514032991545-0.00569615140329915450.00406031315560539950.00406031315560539952.608397205705992.608397205705992.6105122138636812.610512213863681-0.0070399122126690045-0.0070399122126690045FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse0.3602353036403656-0.173164561390876770.20981632173061370.3365320861339569FalseFalseFalseFalseFalse3371.50186360490763371.50186360490763918.89601449274963918.89601449274964.5024512008575684.5024512008575683.8144878495459823.814487849545982-0.1936308918258872-0.1936308918258872FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse3371.5074532840933371.5074532840933918.8956643549023918.8956643549024.3179252279540954.3179252279540953.9545898693934253.954589869393425-0.08448573094236787-0.08448573094236787FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse12690.55412690.5548409.51953125383.3875427246094FalseFalseFalse11303.609375566.5093383789062FalseFalseFalse13122.640625753.0257568359375FalseFalseFalse16299.8378906251126.8494873046875FalseFalseFalse17312.31835937517312.31835937517312.3183593751505.56018066406251505.56018066406251505.5601806640625FalseFalseFalseFalseFalseFalseFalseFalseFalse17494.9970074060842372.2835809978274FalseFalse22393.577207719853553.3350483482855FalseFalse29427.2470137532224696.705269409112FalseFalse25717.2395533974636483.05392201559FalseFalse50150.8260414357658926.96683660556FalseFalse13848.70844047987313848.70844047987313848.708440479873595.3845033572848595.3845033572848595.3845033572848FalseFalseFalse3.328274199595805658.19883800079415FalseFalseFalseFalse0.76362255092258690.0False9.145577018272989e-07-3.210096246556095e-07-3.210892429373345e-07-9.142261222270627e-07FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse10831.23368838422410831.233688384224465.3109147838511465.310914783851138.44949738.4494971259.44451259.444516811681FalseFalseFalseFalseFalseFalseFalse5005.62060546875False17600.6290540408631264.79447535474363.873642412.207742.0241601FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse0.108311950791176060.108311950791176060.110059330856529410.110059330856529412.48158980819951452.48158980819951453.28532304538017563.2853230453801756-0.26275766383440335-0.26275766383440335FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueTrueTrueFalse1.08899142615941711.08899142615941711.08899142615941710.00.00.0FalseFalseFalse1.00680497692731571.00680497692731570.00.0FalseFalse1.04321842261094670.0False1.0False621FalseFalseFalse
1032672138756121460.9265802937651691-0.5962861798603599103267213875611492FalseFalseFalseFalse0True3348.03890.02798.634814584976FalseFalseFalseFalseFalseFalseFalse33483890358413False3347.3816134581073889.940012473602FalseFalseFalseFalse3347.79288325766633347.79288325766633890.0732417820143890.0732417820140.428515670.428515670.395547720.39554772FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse0.136522367867519530.135541921903391981983.0404756798872293.969512143620.153341135549515341942.91015868610222294.79692502496662.08339753492318241.3471873995379130.108487406026642492.23508002052530141.44457346098099570.121739286877517081.99698279428720181.49093186729422380.013212347758027232.22083407280845661.66038459265892580.07789423639628713FalseFalseFalse13.712928832576665272.99573241782014FalseFalse0.9989472215230906False4.2744713910283834.6945736245918965-0.1943998907445813nannannan3347.81591094780833890.0549158783715nannan2.6066913863594092.6091622078977235-0.007003268051897237nannannanTrueFalseTrueFalseTrueFalse-0.005415479297880665-0.0054154792978806650.003878945624364860.003878945624364862.60781918675220672.60781918675220672.6101869939948172.610186993994817-0.006922015511219092-0.006922015511219092FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalsenannannannanTrueFalseFalseFalseTrue3347.94831392729253347.94831392729253889.959689504893889.959689504892.04831866099798932.04831866099798931.31247991445273551.31247991445273550.137986128552314120.13798612855231412FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse3347.9142680109733347.9142680109733889.99053346137953889.99053346137951.76330264073501031.76330264073501031.58063067616716311.58063067616716310.063484522546565030.06348452254656503FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse2029.77942029.77941886.556884765625370.6648864746094FalseFalseFalse2772.269287109375555.24365234375FalseFalseFalse3160.131591796875742.7589721679688FalseFalseFalse2834.319824218751116.7593994140625FalseFalseFalse1871.83776855468751871.83776855468751871.83776855468751492.4079589843751492.4079589843751492.407958984375FalseFalseFalseFalseFalseFalseFalseFalseFalse2533.99237466976052155.1121458820016FalseFalse4047.49688619865633550.028087408143FalseFalse8362.5554232050344694.119635911509FalseFalse11328.604110752486480.799699355324FalseFalse17767.483659778978922.13564896736FalseFalse2182.57283384938272182.57283384938272182.5728338493827356.3431796199471356.3431796199471356.3431796199471FalseFalseFalse0.973108784287841661.17059437630971FalseFalseFalseFalse0.76362255092258690.0False9.145557102598462e-07-3.210172749372803e-07-3.2109725974980986e-07-9.142249852756943e-07FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse2778.69772046797742778.6977204679774448.2110680425448448.211068042544838.4326638.432661368.61111368.611116811681FalseFalseFalseFalseFalseFalseFalse4981.60400390625False2957.806426872167907.88912563614842.81142337.6692362.023983FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse0.5633308642800330.5633308642800330.207929626686109260.207929626686109263.9224846434409293.9224846434409294.54613448367634554.5461344836763455-0.1477627589294278-0.1477627589294278FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueTrueTrueFalse1.08882520589223541.08882520589223541.08882520589223540.00.00.0FalseFalseFalse1.00658689068782881.00658689068782880.00.0FalseFalse1.043256422045450.0False0.0False480FalseFalseFalse
1032672138756121470.9230598588696755-0.59525930459523103267213875611493FalseFalseFalseFalse0True159.03884.07994.288805435658FalseFalseFalseFalseFalseFalseFalse1593884390212False159.042481282001183883.0147375489755FalseFalseFalseFalse159.49578932513685159.495789325136853883.7429442232273883.7429442232270.203543070.203543070.283223960.28322396FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse0.0418913623511212240.00712172045612169414330.95852926864814433.7516738226910.00772216355862009914373.09681359092414484.9519819341794.4448680660654956.110514249353846-0.45134590635511324.5141651267185226.245766182704173-0.47179869125052144.5299831847299336.282461063902637-0.46804094794317364.6108181722463326.432447381901553-0.4904371843832161FalseFalseFalse-18.17004210674863272.93242944223226FalseFalse0.9989457107461053False4.5071493912502596.139144868110938-0.44091175064145220.532418550.440921630.7252022159.500604818682923883.701806357323714515.868114971094857.36197366469412.6409452400115722.52942689517029030.01409749388900243-228.237722.327343-310.8804FalseFalseFalseFalseFalseFalse-0.004661857325515939-0.004661857325515939-0.0010563548153186275-0.00105635481531862752.64222925442451472.64222925442451472.5305229795326822.5305229795326820.0140733209001841010.014073320900184101FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse-0.5042456388473511-0.254013389348983760.138991504907608030.4752974510192871FalseFalseFalseFalseFalse159.50537338659987159.505373386599873883.66128908916973883.66128908916974.5071457350475844.5071457350475846.1257087455378276.125708745537827-0.4408554959226182-0.4408554959226182FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse159.50125365613897159.501253656138973883.6578830920633883.6578830920635.0389360961734695.0389360961734695.5549042400995925.554904240099592-0.1925788661591677-0.1925788661591677FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse14545.27714545.2778707.6064453125383.1622009277344FalseFalseFalse11568.5546875564.6380004882812FalseFalseFalse14727.2080078125751.54638671875FalseFalseFalse17205.4589843751124.1817626953125FalseFalseFalse18913.90429687518913.90429687518913.9042968751499.02551269531251499.02551269531251499.0255126953125FalseFalseFalseFalseFalseFalseFalseFalseFalse19208.3436098657552139.040242305676FalseFalse22976.3310126326983141.352110249089FalseFalse27267.875754114244393.7115893369055FalseFalse36037.165218558166266.350445027979FalseFalse34147.9885739646858769.254758948662FalseFalse15751.52489942360815751.52489942360815751.524899423608660.33692117667660.33692117667660.33692117667FalseFalseFalse2.547591167763755562.086589715220576FalseFalseFalseFalse0.76362255092258690.0False9.139187444696594e-07-3.227472456480042e-07-3.2290234125444196e-07-9.136153389040931e-07FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse10594.17098297529310594.170982975293458.5954443538836458.595444353883638.3686438.368641469.73291469.732916811681FalseFalseFalseFalseFalseFalseFalse4982.6572265625False18586.8931817982121375.83014894068564.24318113.7293112.0148935FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse0.093005209396778810.09300520939677881-0.03919183502193846-0.039191835021938462.96328941174374362.96328941174374362.79616591534808822.79616591534808820.18692076843148830.1869207684314883FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueTrueTrueFalse1.0857232803112011.0857232803112011.0857232803112010.00.00.0FalseFalseFalse0.99953965643194250.99953965643194250.00.0FalseFalse1.03831512128281460.0False1.0False524FalseFalseFalse
1032672138756121480.923047378372287-0.5952677882385764103267213875611493FalseFalseFalseFalse0True152.03896.06619.9094143176435FalseFalseFalseFalseFalseFalseFalse1523896390312False152.060256493089553895.0933260896436FalseFalseFalseFalse152.33455933797293152.334559337972933895.5568148776463895.5568148776460.35457950.35457950.409233270.40923327FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse0.032789655173573580.0165805093772168922448.97444975746522827.4654547886820.02329720428488124622490.32336705244623026.7830354530347.46226599834850711.2747058667375081.08607609318320347.592570261298023511.791718486311830.90518401483228137.506011580988813511.436102526036170.95827527403021237.862123207617174512.3373385119350430.8662822830020035FalseFalseFalse-18.24165440662027273.05056814877645FalseFalse0.9989447656821788False7.44919886372237811.2921883432148841.07586788897380110.74251140.65086371.1255679152.352652451707663895.555207192738622695.560456696451131.1090498120052.64197834838671672.52878425944381750.01421808856741816-419.93066-60.649467-636.57FalseFalseFalseFalseFalseFalse-0.004708049807533143-0.004708049807533143-0.0010741831429186277-0.00107418314291862772.6428851712608012.6428851712608012.52987080528875062.52987080528875060.0141306955163294030.014130695516329403FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse-0.32891309261322020.169959723949432370.084365792572498320.7040466666221619FalseFalseFalseFalseFalse152.37034541817312152.370345418173123895.5532373132353895.5532373132357.4501787806414137.45017878064141311.31116799743853511.3111679974385351.0824939378615941.082493937861594FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse152.33073743896233152.330737438962333895.5530691543493895.5530691543498.1023618357890588.1023618357890589.8818926731489179.8818926731489170.474359256732242940.47435925673224294FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse22329.30722329.3079071.3212890625383.44805908203125FalseFalseFalse14875.6591796875568.4260864257812FalseFalseFalse18875.1328125755.44482421875FalseFalseFalse23205.0058593751127.8546142578125FalseFalseFalse25088.382812525088.382812525088.38281251501.20446777343751501.20446777343751501.2044677734375FalseFalseFalseFalseFalseFalseFalseFalseFalse28150.2430350894572142.3391499020704FalseFalse29353.3195029834753144.370054098177FalseFalse27758.074503157524394.569118559061FalseFalse31793.0358011762156268.241090423675FalseFalse41499.933163497838768.96274178962FalseFalse24652.40985535676724652.40985535676724652.409855356767865.0456057704678865.0456057704678865.0456057704678FalseFalseFalse2.331270412905059463.97353894040375FalseFalseFalseFalse0.76362255092258690.0False9.139161737184107e-07-3.2275328686252916e-07-3.22908664954687e-07-9.13612569549084e-07FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse11491.1660711730211491.16607117302459.9561173825873459.956117382587338.4202638.420261607.79861607.798616811681FalseFalseFalseFalseFalseFalseFalse4984.46044921875False26280.9583421674431598.38559243788364.87708718.1154632.0149622FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse-0.0718925723490429-0.0718925723490429-0.028433888571271382-0.0284338885712713822.9250914976710382.9250914976710382.44401927004311852.44401927004311850.173339987065234540.17333998706523454FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueTrueTrueFalse1.0857732831345181.0857732831345181.0857732831345180.00.00.0FalseFalseFalse0.99953921445639390.99953921445639390.00.0FalseFalse1.03826624967503410.0False1.0False527FalseFalseFalse

Now overplot sources from the src table onto the image display using the Display’s dot method for plotting markers. Display.dot plots markers individually, so you’ll need to iterate over rows in the SourceTable. It is more efficient to send a batch of updates to the display, so enclose the loop in a display.Buffering context, like this:

In [23]:
with afw_display.Buffering():
    for record in src:
        afw_display.dot('o', record.getX(), record.getY(), size=20, ctype='orange')

3.7. Clearing markers¶

Display.dot always adds new markers to the display. To clear the display of all markers, use the erase method:

In [24]:
afw_display.erase()

4. Display a coadd image¶

"Coadds" are the images made by combining multiple overlapping calexps to create a deeper image. Let's look at one of them (in fact, the same coadd that was examined in the related "Image Display" notebook). The Butler dataset type is called a deepCoadd_calexp.

In [25]:
dataId_coadd = {'tract': 4431, 'patch': 17, 'band': 'i'}
coadd_calexp = butler.get('deepCoadd_calexp', **dataId_coadd)

We will also grab the measurements for sources in this coadd (called deepCoadd_forced_src because it is "forced" photometry at the positions of all detected objects), and the "reference table" that contains merged information about all detected objects from all filters.

In [26]:
forced_src = butler.get('deepCoadd_forced_src', **dataId_coadd)
refTable = butler.get('deepCoadd_ref', **dataId_coadd)
In [27]:
afw_display.mtv(coadd_calexp)

That includes a lot of mask information! Use the layers functionality in the Firefly window to turn off "INEXACT_PSF", "REJECTED", and "SENSOR_EDGE" to reclaim your view of most of the pixel data.

Optionally, set the transparency of all mask layers to 100%.

In [28]:
afw_display.setMaskTransparency(100)

4.1. Plotting sources on the displayed coadd¶

As we did for the calexp, let's display sources on top of the deepCoadd_calexp image. We will apply three selection criteria:

  1. Spatially select objects that are near the bottom left corner of the image (at X<1000 and Y<1000, where X and Y are the pixel values. (This is just so that the overplotting will go faster.)

  2. Use the detect_isPrimary flag to select non-duplicate objects that have been deblended (see this section of the pipelines tutorial for details).

  3. Use one of the flags from the reference table that tells you whether a source was measured to be "extended" (like a galaxy). The base_ClassificationExtendedness_value is set to 1 for extended sources (galaxies) and 0 for point sources (stars). Again, see the tutorial section linked above for more about this flag and an example of its usage.

Note that if you want to see all of the columns in the forced_src or refTable catalogs, you can use the method "forced_src.schema" or "refTable.schema".

Notice: Because a "patch" is part of a larger "tract", the (X, Y) coordinates of the lower-left corner are not (0, 0). We need to get the coordinates of that corner and subtract them off, which is what the first few lines of the next code cell does.

In [29]:
xy0 = coadd_calexp.getXY0()
xPos = refTable["base_SdssCentroid_x"] - xy0.getX()
yPos = refTable["base_SdssCentroid_y"] - xy0.getY()

boxSelect = (xPos < 1000) & (yPos < 1000)

isPrimary = refTable['detect_isPrimary']

isStellar = refTable['base_ClassificationExtendedness_value'] < 1.

Display stars in the lower-left corner with orange circles.

In [30]:
with afw_display.Buffering():
    for record in forced_src[boxSelect & isPrimary & isStellar]:
        afw_display.dot('o', record.getX(), record.getY(), size=20, ctype='orange')

Display galaxies in the lower-left corner (really, just anything that is "extended") with blue circles

In [31]:
with afw_display.Buffering():
    for record in forced_src[boxSelect & isPrimary & ~isStellar]:
        afw_display.dot('o', record.getX(), record.getY(), size=20, ctype='blue')

Use the magnifying glass icon to zoom in on the lower-left corner where the objects are marked, and inspect the image. Use the color palate and histogram icons to change the color bar and pixel scaling to examine faint sources within circles that appear empty.

5. Exercises for the learner¶

This tutorial was a basic introduction to displaying and manipulating images with Firefly.

  1. Change the colors of the mask plane, or the flux scaling of the image display.
  2. Explore a different deepCoadd (e.g., the galaxy cluster used in the introductory notebook).
  3. Identify different source populations to overplot (e.g., faintest stars, inclined galaxies).

Enjoy exploring the DP0 images and catalogs!

5.1. Review additional documentation¶

If you would like more information on lsst.afw.display, please have a look at the following websites:

  • Firefly user guide

  • Getting Started on Image Display (pipelines.lsst.io)

  • afw.display Doxygen website

  • afw.display GitHub website

In [ ]: